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ABSTRACT

This work comsiders the effect of roughness and waviness
on interfacial pressure distributions and interfacial contact
resistance. It is shown that for moderate roughness the contour
area could be substantially different from the contour area
calculated using the Hertziam theory., The model for pressure
calculation assumes plastic deformation of surface irregularities
and elastic deformation of a spherically wavy base. The calculat-
ions of pressure distributions cover the range of parameters of
practical interest. Experimental contact resistance values have
been determined and are compared with theoretical predictions.
It was calculated that contact conductance for wavy surfaces can
be increased for certain ranges of parameters by making surfaces
rough.
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NOMENCLATURE

Hertzian radius

1/2
Dimensionless Hertzian radius, aH/(Ric)
Contour radius

Area

Apparent contact area

Contour area

A/Rio

Radius of heat channel

Centerline average

Constant inside a summation

Moduli of elasticity of specimens in contact

1 - v2 1 - vz
= ¢ 1 + 2)-1
WEl WEZ
Force
F/HORi
h/hav

Microhardness of the softer of two materials in contact
Wave amplitude; Heat transfer coefficient

Average heat transfer coefficient

Bessel function of order n

Thermal conductivity--if two materials are in contact,
k = 2k1k2/(k1 + kz)

Pressure

Average pressure



q/A, Q/A

=<

Average pressure over contour area
Hertzian pressure

Local pressure over Hertzian area

P/H

Plagticity index = (E/H) (o/Ri)l/ 2

Heat

Heat flux over surface A

Thermal resistance; Radius of curvature

Constriction resistance

RiRy/(R; +R,)

Radii of curvature of undeformed, spherically wavy surfaces
Macroscopic resistance term

Radial coordinate parallel to contact interface plane

r/ ®,0)1/?

A quarter-wavelength

Radius where pressure becomes zero

Local surface temperature

Ambient temperature

Extrapolated surface temperature

Deformation of spherical object at point r

Distance between the mean lines of specimen surfaces,

measured in a direction perpendicular to the interface
plane

Y/o

Slope of a surface profile at position i
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z Vertical distance coordinate

Greek Letter Symbols

A r/b
v, Roots of Jl(vn) =0
vl,vz Poisson's ratio of specimens in contact

p Distance between any point r and any elemental area

dA on the interfacial area

- 1/2
5 /@0
g Root mean square deviation of roughness heights--
2 2,0.5
g = (o1 + 02) when two surfaces are in contact
Tanb Mean absolute value of profile slopes--Tanf = (Tani@ + Tange)
if two surfaces are in contact. More specifically,
- LIM l L ! -
'I‘anei —L+°°ffo Iylldx, i=1,2, ...
¢ Contact resistance factor

0.5
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1. INTRODUCTION

Thermal resistances discussed in this work are assumed to occur in
a vacuum environment, or in an environment where an interstitial fluid
has a very low thermal conductivity. Thermal contact resistance is
defined by

AT

R=m (1)
where (q/A) is the heat flux based on the apparent area, and AT is
defined in Figure 1. Consider two pileces of smooth metal that are
pressed together. As seen in Figure 2A, there is a finite number of
contact points, Ac' The total actual contact area is often much smaller
than the apparent area, Aapp' Resistance to heat flow across such a
joint is called contact resistance due to macroscopic constriction.
The term "constriction'" is used because heat-flow lines must squeeze
together to pass through the contact area (see Figure 2B). Of course,
the constriction would be present only in a vacuum, or where the inter-
stitial fluid has a lower conductivity than the base material. If the
surfaces are rough (Figure 2C), the true contact area will be even smaller
than Ac. For this reason, AC will from now on be referred to as a ''con~-
tour area" rather than a "contact area.'' The additional area reduction
due to roughness causes 'microscopic constriction" of the heat-flow lines.

If Ac = Aapp’ only microscopic constriction is present, and the pres-

sure distribution over the contour area is uniform. When both macroscopic
and microscopic constriction are present, the pressure distribution is non-

uniform, because of the clustering of contour areas at discreet locations.
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Holm [6), Kragelski [7], Clausing [1], and Greenwood [3] developed
equations for contact resistance under these conditions. They superim—
posed a microscopic constriction relation over another equation that
applies to the macroscopic case. These relations, however, require a
detailed knowledge of the contour area. Consider heat flow between two
cylindrical solids whose channel radii are greater than the radius of
their contour area (as in Figure 2B). In addition, let the surfaces
originally be spherically wavy. There are three ways that one can model
the heat transfer across the interface:

1. Assume constant temperature across the contour area;

2, Assume constant flux across the contour area; or

3. Assume that the heat flux through any point on the contour area is
proportional to the microscopic conductance, which is in turn a
function of the local pressure between the two surfaces.

In the first case, the maximum heat flux occurs at the outer rim
of the contour area, For this reason, heat-flow lines that are outside
the contour radius as Z + « must change their direction a minimal amount.
The third case, however, places the maximum heat flux at the center of
the contour area, making it necessary for the outer heat-flow lines to
change direction substantially more. In the second case above, heat-flow
is distributed in some intermediate fashion.

Resistance to heat flow is highest when the heat-flow lines must
redistribute themselves to the greatest extent. For this reason, a con-
tact resistance formula employing assumption (3) will be an upper bound
for the actual contact resistance. Case (1) will consequently be a lower

bound, and case (2) will fall somewhere in the middle.
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A simple formula, e.g., Reference [2], predicts the macroscopic
constriction resistance from the radius of the contour area:
¢w ﬂbz
Rmac = 7k a (2)
w
where a, is the contour radius, b is the channel radius, and k is the
thermal conductivity, ¢w’ the contact resistance factor, is given by

84.1.5

¢ = (1 -'g-)

where constant temperature is assumed and by

32 80.1.5
¢ == (1 -3
3n

for the case of constant flux, A similar resistance equation includes

the effect of microscopic constriction resistance {9]:

2
S Ui 3y
2h 2ka
a c w
W
where
P 0,985
a, * k Tan8
hc = 1,45 ('}T-) ———0_ . 4)

Tan0 is the mean absolute value of the profile slopes, and 0 is the
root-mean square deviation of roughness heights. Pa is the average
pressure over the contour area, wawz.

We now have equations for models (1) and (2), assuming constant tem-
perature or constant heat-flux across the contour area. Mikic [8] has
developed an equation that falls into the third category, where contact

resistance is a function of the contour area pressure distribution, P(r):
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0.985

P dA]

-1
7

g 1
R = 0,345 m[fo A(

w il 0.985 2
Lo T VAR 3 o)
K

5 (5)
n=1 vn Jo(vn)

b, 0, and Tanf have been defined above. Hardness and thermal conductivity
are denoted by H and k, respectively, and A is the dimensionless radial
coordinate X = r/b. Jn is the Bessel function of order n, and vn are
the roots of
Jl(vn) =0 .

Pav is the average pressure over the apparent area. A summary of the
derivation of this equation appears in Appendix A. Knowledge of the interfa-
cial pressure distribution is required for this equation, The Hertzian
pressure distribution for a smooth sphere pressed against a rigid flat
plane cannot, in general, be used as an approximation. Greenwood [4]
has shown that in many instances the pressure distribution under a rough
sphere is substantially different from the Hertzian approximation.

This work evaluates numerically the required pressure distribution
curves for rough, wavy surfaces in contact. The curves are compiled in
terms of convenient dimensionless parameters. In addition, experimental
values of contact resistance are presented and compared with theoretical
results,

The model used in this work assumes that microscopic surface irregulari-
ties are random and normally distributed, and their deformation is plastic.

Deformation of the spherically wavy base surface is elastic.
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2, DESCRIPTION OF SURFACES

The surfaces considered in this investigation are both wavy and
rough. A surface is wavy if its profile has a finite radius of curva-
ture along some finite length (see Figure 3). Roughness appears as a
zig-zag pattern of surface heights superimposed over the waviness. The
surfaces considered are assumed to have a Gaussian distribution of
heights. It has been shown in Reference [2] that for the purpose of
determining contact resistance, the parameters O, Tan, and R provide
a sufficient description of the surfaces involved. O is the root-mean-
square deviation of roughness heights, and Tan0 is the absolute slope
of these irregularities. In a wavy surface, R is the radius of curva-
ture of a half-wave. A convenient way of finding R is by charting the

surface profile and using the following equation (refer to Figure 3):

2
-t
2 (wave amplitude) 2h °

6% wavelength)2 r
R =

(for %-<< 1) . (6)

A description of surface-profile measuring devices is given later on in

this paper.
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3. INTERFACE PRESSURE DISTRIBUTION

3.1 Governing Equations

The following equations determine the pressure distribution between

two rough and wavy surfaces in contact under a load F:

Y

P = % ERFC () (7)
g
I2“"1 +R)) o 1..P

Y(r) = Y(0) + - = fPdr+=/[f=adA (8)
2 B4R, E T aP

F=/fPdA. 9)

A

Non-dimensional versions of these equations are:

P = 5 ERFCC) (7a)
z
I® =¥ +3 7 - B s Far+p i (8a)
A D
F=//PdA. (9a)
A

The variables in these equations are defined in the Nomenclature and
Figures 4A, 4B, and 5.

Equations (7) and (7A) come from surface-height distribution theory
and the assumption of plastic deformation of surface asperities [2].
Equations (8) and (8A) result from geometry and an assumed elastic deforma-
tion [11] as seen in Figure 4A. The final equation is a simple force
balance which must be satisfied. The solution of these equations is

described in Section 3.2.
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The non-dimensional version of these equations results in (dimen-
sionless) pressure vs. (dimensionless) radius curves that are functions
of only two parameters, Pl and F. For practical purpoges, the most use-
ful plasticity index values range fromAO.O to 0.6. These values corres-
pond to metals such as copper, aluminum, and stainless steel, with root-
mean-square roughnesses from 20 micro-inches to 200 micro-inches, and
whose wavy surfaces have radii of curvature between 25 inches to infinity.

3.2 Method of Solution

This section describes the technique used to find a pressure distribu-
tion employed by the contact resistance equation (Equation (5)). A pres-
sure distribution is determined by an iterative procedure that refines a
rough approximation until all three of the governing equations (7, (8),
and (9) are simultaneously satisfied.

The Hertz solution for a smooth sphere pressed against a rigid flat
wall [11] is taken as a first approximation for Y(r). This Y(r) is sub=-
stituted into Equation (7) whose pressure is in turn placed in Equation
(8) along with an arbitrary constant value of Y(0). The new Y(r) found
from Equation (8) is then placed in Equation (7) and checked by (9) to
determine if its load matches the actual load. At this point, Y(0) is
repeatedly modified until the pressures in (9) yield a force that is within
10 per cent of the correct load.

In some cases the calculated load will be lower than the actual load
even when Y(0) = 0. Thus it would be impossible to reach the correct load
by merely modifying Y(0). When this condition exists, Y(0) is immediately

called zero, and the resultant pressures are sent directly to Equation (8).
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Here the shape of the pressure distribution is changed until the correct
load can be obtained. When the iteration process passes through Equations
(7) and (8) twice in a row yielding approximately the same pressures
(within 1 per cent), the computation is complete, and the desired pres=-
sure distribution is printed.

Computations were made using an I.B.M. 360, For the cases presented
in this work, twenty-four radial increments have been used in the finite
difference approximations. To be sure that twenty-four increments were
sufficient, a test case was run at forty-eight increments also. Compari-
son of the two resulting pressure curves shows a maximum discrepancy of
5 per cent and an average discrepancy of less than 1 per cent. Based on
the above, it was concluded that twenty-four increments yield sufficient
accuracy.

In the calculation procedure, symmetry was imposed on the bulk elas~-
tic deflection by setting w(0) = w(Ar) where w(0) is the deflection at the
center and w(Ar) is the deflection at the first radial point. In this
way, the slope of the deflection curve at the center line will be zero.

3.3 Pressure Distribution Curves

The Hertzian pressure distribution between two spherically wavy sur-

faces is given by

- 1.5F 0.5
P= 5

'rraH

(10)

a - G/EH)_Z)

where F is the dimensionless applied load, and ;ﬁ is the dimensionless
Hertzian radius, ;ﬁ = 1.333 (F/P1)1/3.
When a surface is rough, the pressure distribution may or may not

differ significantly from the Hertzian solution. The region of Pl vs. F
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plane where roughness is significant has been determined in this work
and is presented in Figure 6. Roughness causes pressure distributions
to differ significantly from Hertzian predictions in the following
regions:

F<12.8 1'%, 0 < p1 < .10 (11)

F < 11.7 (P1) - 0,25, .10 < P1 < .60 . (12)

Even outside of these regions, edge effects will cause the contour
radius to be greater than the Hertzian radius.

Dimensionless pressure curves for the region defined above appear
in Figures 7-16. Coordinates for these and other pressure curves are
listed in Appendix C. Pressure curves close to the transition line in
Figure 6 closely resemble Hertzian shapes, whereas far below this line,
curves are much flatter. Figures 17-19 illustrate this by depicting
pressure curves at extreme values of F along with the associated Hertzian
pressures. In each of these pictures, the curve with the higher maximum
is the Hertzian pressure (pH).

Let r, be defined as the radial position where the pressure drops
to zero. r, is therefore the contour radius and is available from the
enclosed pressure distribution solutions. The ratio of r  over the
Hertzian radius (aH) becomes less as the applied load is increased.
rolaH is plotted as a function of Pl and F in Figure 20. rO/aH approaches
a constant value greater than one as F values leave the regioﬁ described
by Equations (11) and (12). Outside this region, r, should probably be
used instead of a, as the contour radius in Equations (2) and (3), whereas
the Hertzian pressure distribution is in this case acceptable for Equa-

tion (5).
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The rO/aH curves in Figure 20 are obtained from values of r,
which are read directly from Figures 8«16, There is some subjec-
tive interpretation as to where the pressure actually reaches zero,
The behavior of the Pl = .1 curve should be accepted with caution
because (as seen in Figure 8) only three r, values were used to

construct that curve.
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4, EXPERIMENTAL PROGRAM

4,1 Preparation of Specimens

Experiments are performed with solid circular cylinders 1-1/2
inches long and 1 inch in diameter. The specimens are cut from stain-
less steel 303 bar-stock, Four holes (size 55 drill) are drilled to
the centerline of each specimen so that thermocouples can be inserted
for measurement of the axial temperature drop. The first hole is 1/4
inch from the interface, and the rest of the holes are 3/8 inch apart.

The contact resistance interface surfaces are lapped nominally flat.
Waviness is created by the following method: A specimen is rotated in
a lathe while a hard rubber block is used to press an abrasive (emery
paper or diamond paste) against the test surface. The velocity distribu-
tion of the abrasive relative to the interface surface causes wear to be
an increasing function of radius. In this way, the longer the abrasive
is held in contact, the more convex the specimen becomes.

After the degree of waviness has been measured by a surface profilome-
ter, the surface is blasted with glass beads to provide a desired roughness.

Waviness measurements are taken using a device specially built to
accommodate the l-inch diameter, l-1/2-inch long specimens used in contact
resistance experiments (see Figure 21). This device consists of a speci-
men holder that slides slowly beneath a diamond stylus that is connected
to the core of a linear variable‘differential transformer. As the speci-
men passes underneath the stylus, the stylus moves up and down to follow
the specimen surface. The profile shape is traced out on a Sanborn 150

recorder, This profilometer is capable of magnifying the vertical
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deflection by a factor of five hundred. A detailed description of this
device may be found in Reference [5].

Roughness is measured on a Taylor-Hobson Talysurf IV. The "Talysurf"
provides a profile chart and a direct reading of the centerline average
(C.L.A,). The root-mean-square roughness (0) can be determined by the

following relation:

o = [C.L.ALT (m/2)%°% £ 1.25 [c.L.A.] (13)
The absolute value of the slope, Tanf can be computed graphically from
the profile chart.

4.2 Description of the Apparatus

Contact resistance data have been obtained from the apparatus in
Figure 22. 1In a few words, the apparatus passes heat through two speci-
mens in a vacuum environment. The three main sections of the apparatus
are:

1. a vacuum chamber;

2., a refrigeration unit; and

3. a lever arrangement for applying an adjustable force to the

test interface,.

The vacuum system 18 basically a hollow aluminum cylinder which
has been fabricated from four main sections. An upper cylinder is welded
to a top plate. When the rig is in use, a removable lower cylinder with
a flange seals up against an "0" ring and a bottom plate. The bottom
plate is bolted to the supporting structure. The upper and lower cylinderé
are bolted together at their interface where another "0" ring allows for
a vacuum seal. Connections with the vacuum pumps and the refrigeration

unit are made through the bottom plate. Thermocouple wires, power lines
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for the specimen heater, and a bellows for the loading mechanism enter
through the top plate.

The vacuum is created by a forepump (Cenco HYVAC 14 rotary mechani-
cal pump)‘and a 4-inch diameter diffusion pump (NRC model H4SP). A
three-way valve allows the forepump to bring the system pressure down
to 50 microns of mercury where activation of the diffusion pump will con=-
tinue to lower the pressure to 15 microns of mercury.

The refrigeration unit, of course, supplies the low temperature
sink for the heat fluxes that are passed through the test specimens. The
unit is a 1-1/2 horsepower, Model 155 WFC, built by the Copeland Corpora-
tion. With its evaporator at 25 OF, it can receive up to 16,840 BTU/HR.
Freon 12 serves as the refrigerant fluid. The magnitude of the heat-flux
produced is crucial to contact resistance studies because with large loads
too low a heat-flux will produce a negligible AT across the test interface.

A series of levers, supported by a welded steel frame, permits the
application of force to the specimens at a ratio of 100 to 1. This dead-
weight loading is transmitted into the vacuum system via a 15-convolution,
3-3/8-inch I.D. stainless steel bellows, manufactured by the Flexonics
Division of the Universal 0il Products Company. At atmospheric pressure,
the applied load can be adjusted between 0 and 20,000 pounds. When the
system is evacuated, the minimum load is 163 pounds, due to the atmosphere
pressing down on the 3-3/8-inch diameter bellows device.

In addition to the apparatus listed above, there is a water-flow
cooler between the bellows and the heater. This cooler prevents the

heater from raising the temperature of the rest of the chamber to a level
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that would destroy the vacuum seals. The heater is powered by a 220
volt d.c. power source. A more detailed description of this apparatus
may be found in Reference [12].

4.3 Experimental Procedure

Chromel-alumel thermocouples are covered with "Silver Goop'" and
inserted into the specimens. ("Silver Goop,' manufactured by the Crawford
Fitting Company, is a substance that provides a good thermal contact.)

The thermocouple wires are then sealed in position with "White Epoxy,"
a product of the Hysol Division of the Dexter Corporation.

With the specimens inside, the vacuum chamber is sealed. The mechani-
cal pump is switched on, and the system pressure is brought down to 50
microns of mercury. At this point the diffusion pump is activated to fur-
ther lower the pressure to 15 microns of mercury. The applied load is now
the minimum force of 163 pounds. After the water-flow cooler and the
refrigeration unit are turned on, the heater is powered up to pass a heat-
flux through the gpecimens.

Temperature readings are recorded from a thermocuple potentiometer
every thirty minutes. When two successive readings are the same, it is
assumed that steady state has been reached. The applied load is now
increased, and the temperature-recording procedure is repeated. The
applied load is always increased rather than decreased because the speci-

mens may undergo a plastic (irreversible) deformation.
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5. EXPERIMENTAL RESULTS AND DISCUSSION

The results of contact resistance experiments appear in Tables I
and II and are plotted in Figures 23A and 23B. Also appearing are the
predictions using Equation (2) for contact resistance with wavy surfaces,
Equation (3) which includes the effects of both roughness and waviness,
and Equation (5), an integral formula which assumes that the local
interfacial flux is proportional to the local microscopic conductance
and hence is a function of the local interfacial pressure. Equation (5)
was solved on an I.,B.M. 360 computer, using forty-four and eighty-nine
radial increments (for the two different cases involved in the experiments)
in a finite difference approximation of the integrals. The summation
appearing in the macroscopic resistance term was evaluated using the first
six terms of the series. The computer program for this equation appears
in Appendix A. Equations (2) and (3) are given for the case of constant
flux over the contour area, using two separate choices for the contou
radius, a .

a. a = a the Hertzian (smooth surface) approximation; and

H’
b. a =T, the rough-surface contour radius determined from
the pressure curves in Figures 7-16.
It has been stated earlier that Equation (5) is an upper bound for
resistance (a lower bound for conductance). This indeed appears to be
the case, as Equation (5) is the lowest curve in both Figures 23A and 23B.

Using a =a Equation (3) is very close to Equation (5). For the

H’

particular parameters involved in the experiments (for which the macro-

scopic conductance was the dominant factor), Equation (3) with a, = r,



2=

gives the best prediction for the actual contact conductance (to within
25 per cent accuracy).

It is important to notice that in certain ranges of parameters, a
wavy surface will yield a higher h if it is roughened. This is caused,
as it is shown in this work, by an increase in the contour area. (The
engagement of the two surfaces covers a larger area when roughness is
present as in Figure 4B.) Experimentally, this was also observed by
Clausing [1]. He, however, did not explain the phenomena.

Experiments performed in this work dealt with surfaces that were
both rough and wavy. There was no need to experiment with rough, flat
surfaces, because this topic has already been covered sufficiently, both
experimentally and theoretically, in Reference (2], for example. Similarly,
the case of smooth, wavy surfaces has been covered amply by authors such

as Clausing (1],
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6. CONCLUSIONS

From pressure distribution curves given in Figures 7-16, one can
determine the actual contour area between two rough and wavy surfaces.
In a certain range of parameters, this contour area is substantially
larger than the value calculated from the Hertzian theory. Experi-
ments were performed in this range, and three basic approaches for the
calculation of contact conductance were applied to the results, includ-
ing formulas based on

a, the Hertzian contour area;

b, the contour area predicted by this work; and

c. an integral relation which uses the complete interfacial

pressure distribution,

It is suggested that Equation (3) (which assumes constant flux over the
the contour area) using contour radii predicted in this work 1is the bes;
prediction for the cases involved in the experiments (in which the pre=-
dominant resistance comes from macroscopic constriction). For those cases
where microscopic resistance is primarily controlling the value of con-
tact resistance, it is believed that the integral relation (Equation (5))
would yield the correct prediction. (For the case of a uniform pressure
distribution between two flat, rough surfaces, Equation (5) reduces to one
term, the microscopic constriction resistance.)

The main conclusion is that contact conductance can be increased for
certain ranges of parameters by making surfaces rough. This thesis also

identifies the range of parameters where roughness will substantially affect

the interfacial pressure distribution between rough and wavy surfaces.
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APPENDIX A

DERIVATION OF CONTACT RESISTANCE EQUATION

The equation developed by Mikic [8] for contact resistance (Equa-
tion 5) was derived as follows:

Figure 24A depicts a solid circular cylinder with a non-uniform
heat transfer coefficient, h, on the z = 0 face. The sides are insu-
lated, and heat-flow is assumed to be one-dimensional as z + ., The

flow of heat at the top surface is
Q=/h (T =-T) dA (A1)
A
where To and 'I‘c are defined in Figure 24A. The heat-flux over that
surface i3 therefore

Q/A=Th -%IT hdA (A2)
A

where

>

av S haa .
A

The total resistance from the surface to the ambient is

T =T
RE-—gﬁ:——s- (A3)

where Ts is defined in Figure 24B,

To transform (A2) into the form of (A3), the term
1
=/ h TdA
A A s

can be subtracted from and added to the second and third terms of (A2),

respectively to yield:
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1
Q/A (To - Ts) hav - Xi‘ (Tc - Ts) hdA . (A4)
Thus we now have:
R‘h—l"*%f?{h‘”c"fs)“' (A5)
av A av

The second term on the right-hand side of (A5) 1is the constriction

resistance:
_1 h
R, = 6 S Y{; ('I‘c - Ts) dA . (AS5.4)

This represents the difference in total resistance between the two cases
pilctured in Figure 254,

Figure 25B illustrates the basic model for which Equation (5) was
developed. At z = 0, h is a function of radius, and the sides are insu-
lated. Also, %% = constant as z > o,

The governing differential equation for the situation is

vraeo (46)
where V2 1s the Laplacian operator. For the given boundary conditions,

the steady-state solution is

o -v z/b
T =T - —9-5 z+ I C e ® 3 (v /b) (A7)
knb n=1
where vn are the roots of
Jl(vn) =0 , : (A8)

Using relation (A8) and the approximation

T
[“k(539z-o]ac r . h(r) (A9)
Q/A ~ h ’

av
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Equation (A7) becomes

w 1
fo A Jo(vnk) £(A) dx

J (v ) (A10)
n=1 v J*w) cn
n o n

where A = r/b and £()) = h/hav' Combining (A5.A) and (A10) will yield
1 2
: [fo Af()) Jo(vnl) di)

2
n=1 vn Jo(vn)

R =4

¢ . (All)

=|o

Contact conductance for purely rough surfaces with Gaussian surface
height distributions has been shown in Reference [2] to be

P_0.985

a
(ﬁ—) (A12)

h_ = 1,45 kTan®
c g

where the variables have been defined in the nomenclature. By combining

(A11) and (Al12), Equation (A5) becomes Equation 5:

0.985

P dA]

-1
ﬁ)

o 1
R = 0.345m— [fo A (

= U 2@ )0 3w a?

2 (5
n=1 vn Jo(vn)

8b
*



APPENDIX B

COMPUTER PROGRAMS

List of Fortran Variables Used in Programs

Notation of This Thesis

Pl

x|

o}

J (x)

p, or P

P, or P

P1

Y(r)
Y(0)
A,dA

v where Jl(vn) =0

Fortran Symbol

AH

AHB

PLOAD, FBAR

H

BESEL (X)

AK
PRES,PRSS,PREZ,
HRTZP (Hertzian)
PRESH (Due to Hertzian Y)
PBAR,PBAZ

PL

RES

RADI,RAD

R1,R2

R,RR,RHOM (radial position
of dA)

RB,DRB
YB(I)
YNB
ALAM,DL

ANU(J)



Notation of This Thesis

pp

Tanb

Tanle,Tanze
g

g, ,0

1’72

-3]1-

Fortran Symbol

s

TAN

TAN1, TAN2
SIGMA

SIGM1, SIGM2
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PROGRAM TO DETERMINE DIMENSIONLESS PRESSURE

DISTRIBUTIONS BETWEEN ROUGH AND WAVY SURFACES

INPUT DATA LINE NO.
a. MAX = Number of radial increments 31
b. PL, F 33
c. YNB = first approximation for Y (0) 38
OUTPUT DATA
a. P4, F 41
b. Dimensionless Hertzian pressures 57
c¢. Dimensionless Hertzian radius 68
d. First approximation for Y(r) 69
e. First approximation for P(r) 78
f. Second approximation for P(¥) 96
g. If any values of Y(r) are negative, they are

written here. 151
h. Final values, P(Y) 229
i. Final values, 7(;) 230
j. F calculated from P(r) 232
k. Dimensionless radial coordinates 235

1. P4, F 239
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PROGRAM TO DETERMINE CONTACT RESISTANCE

USING EQUATION (5)

INPUT DATA

b,

H, 015 99s Tanle, Tan29

k (thermal conductivity)

Rl, R2, MAX = Number of pressuresto be read

in, N = number of roots of Jl(vn) = 0 to be read in
Dimensionless pressures

Roots of Jl(vn) =0

Dimensionless radial increment

Average pressure = F/A
ge p /A pp

OUTPUT DATA

a. INPUT DATA

b. Microscopic resistance term
c¢. Macroscopic resistance term
d. Total contact resgistance
NOTE:

one less than the number of sets of input data.

LINE NO.
34

35

36
37
38
39

40

93-100
102
104

106

The number appearing in the inequality in card 107 should be
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APPENDIX C

TABLES OF COORDINATES FOR PRESSURE DISTRIBUTIONS

Pl= 002
F = .005
T P

0.000 .00066
0.302 .00066
0.603 .00061
0.905 .00054
1.206 .00046
1.508 .00034
1.809 .00019
2,111 .00007

2.412 .00000



|

0.000
0.239
0.478
0.718
0.957
1.197
1.436
1.675
1,915
2.154

2,393

F = ,005

P
.00097
.00097
.00089
.00081
.00068
.00052
.00034
.00016
.00005
.00001

.00000

"

0.000
0.302
0.603
0.905
1.206
1.508
1.809
2,111
2,412

2.714

.010

P
.00132
.00132
.00121
.00109
.00092
.00069
.00040
.00014
.00002

.00000



sl

0.000
0.263
0.527
0.790
1.054
1.317
1.580
1,844
2,107

2.371

.010

-48~

Pl =

P
.00164
.00164
.00152
.00136
.00115
.00087
.00054
.00024
.00006

.00000

.006

"

0.000
0.302
0.603
0.905
1.206
1.508
1.809
2.111
2,412

2,714

.015

|

.00199
.00199
.00183
.00165
.00139
.00103
.00062
.00023
.00004

.00000



"

0.000
0.279
0.559
0.839
1.120
1.400
1.679
1.959
2,239

2,519

~49-

Pl =

.01

|

.00293
.00293
.00270
.00243
.00204
.00153
.00093
.00039
.00009

.00000



|

0.000
0.279
0.559
0.839
1.120
1.400
1,679
1.959
2,239
2,519

2,799

"

0.000
0.353
0.705
1,058
1.411
1.763
2,116
2.469

2.821

. 040

P
.00590
.00590
.00545
.00492
.00416
.00316
.00199
.00089
.00023
.00003

.00000

«50=

Pl =

.02

"

0.000
0.320
0.641
0.961
1,282
1.602
1.922
2,243
2,563

2,884

.080

.060
P
.00685
.00685
.00631
.00568
.00476
.00350
.00198
.00068

.00010

.00000

P
.00765
.00765
.00701
.00629
.00528
.00384
.00203
.00054

.00005



=51~

Pl = .04
F=,13 F = .16
T P T P

0.000 .01412 0.000 .01556
0.320 .01412 0.353 .01556
0.641 .01305 0.705 .01433
0.961 .01182 1.058 .01294
1.282 .01004 1.411 .01090
1.602 .00763 1.763 .00807
1.922 .00469 2.116 .00458
2.243 .00189 2.469 .00145
2.563 .00036 2.821 .00016
2.884 .00002 3.174 .00000

3.204 .00000



H|

0.000
0.353
0.705
1.058
1.411
1.763
2.116
2,469
2.821
3.174

3.527

-52-=

Pl =

|
'

.05

P
.01861
.01861
.01708
.01530
.01273
.00916
.00487
.00140
.00014
.00000

.00000



a1

0.000
0.302
0.603
0.905
1,206
1,508
1.809
2,111
2,412
2.714
3.015

al

0.000
0.415
0.829
1.244
1.658
2,073
2.488
2,902
3.317
3.731

.25

-53-

Pl =

P

.03056
.03056
.02825
.02540
.02138
.01609
.00992
.00429
.00104
.00011
.00000

T =

" |

0.000
0.367
0.734
1.100
1.467
1.834
2,201
2,567
2,934
3.301
3.668

"]

P

.04503
.04503
.04122
.03693
.03079
.02210
.01103
.00232
.00009
.00000

|

.04072
.04072
.03758
.03397
.02878
.02169
.01282
.00439
.00053
.00002
.00000



=54~

P1 = ,20
F=.,2 F = .4
T P T i3
0.000 .03741 0.000 .05564
0.222 .03741 0.280 .05564
0.444 .03543 0.560 .05174
0.667 .03010 0.840 .04685
0.889 .02685 1.120 .04008
1.111 .02071 1.400 .03131
1.333 .01446 1.679 .02105
1.555 .00859 1.959 .01096
1.777 .00409 2.239 .00378
1.999 .00145 2,519 .00073
2,222 .00036 2.799 .00007
2,444 .00006 3.079 .00000
2.666 .00000
F = .6 F=.8
T P T P

0.000 .06558 0.000 .07312
0.320 .06558 0.353 .07312
0.641 .06071 0.705 .06748
0.961 .05472 1.058 .06068
1.282 .04625 1.411 .05091
1.602 .03506 1.763 .03767
1.922 .02189 2.116 .02191
2.243 .00954 2,469 .00788
2,563 .00223 2.821 .00119
2.884 .00021 3.174 .00005

3.204 .00000 3.527 .00000



-55=

P1 = .20
F=1 F=1.3

T P T P
0.000 .08200 0.000 .09035
0.379 .08200 0.404 .09035
0.759 .07567 0.807 .08344
1.114 .06825 1.211 .07551
1.520 .05759 1.615 .06403
1.899 .04296 2.018 .04827
2.279 .02486 2.422 .02826
2.659 .00818 2.826 .00897
3.039 .00090 3.229 .00079
3.419 .00002 3.633 .00001
3.799 .00000 4.037 .00000

F=1.4 F=1.6

T P T P
0.000 .09551 0.000 .09919
0.425 .09551 0.444 .09919
0.850 .08810 0.889 .09136
1.275 .08002 1.333 .08232
1.700 .06825 1.777 .06892
2,125 .05113 2.222 .05033
2.550 .02863 2.666 .02679
2.975 .00791 3.110 .00611
3.400 .00049 3.554 .00023

3.825 .00000 3.999 .00000



ni

0.000
0.462
0.924
1,386
1.848
2,310
2,773
3.235
3.697

4,159

=56~

P1 = .20

|

= 1.7

P
.10280
.10280
.09467
.08538
.07131
.05126
.02578
.00489
.00011

.00000



=57~

Pl = .30
F=.2 F = .4
T 3 T P
0.000 .04341 0.000 .06279
0.194 .04341 0.245 .06279
0.388 .04109 0.489 .05844
0.582 .03840 0.734 .05259
0.776 .03203 0.978 .04461
0.970 .02575 1.223 .03477
1.164 .01922 1.467 .02403
1.359 .01283 1.712 .01364
1.553 .00742 1.956 .00588
1.747 .00357 2.201 .00174
1.941 .00137 2.445 .00032
2.690 .00003
2,934 .00000
F = .6 F=.8
T 3 T P
0.000 .07933 0.000 . 10440
0.280 .07933 0.308 .10440
0.559 .07374 0.616 .10020
0.837 .06653 0.924 .08434
1.120 .05658 1.232 .06819
1.400 .04384 1.540 .05281
1.679 .02921 1.848 .03449
1.959 .01511 2.157 .01671
2.239 .00525 2.465 .00484
2.519 .00103 2.773 .00066
2.799 .00099 3.081 .00003

3.079 .00000 3.389 .00000



-58-

P1 = .30
F=1.2 F=1.5
T P T P
0.000 .11040 0.000 .11940
0.353 .11040 0.379 .11940
0.705 .10230 0.759 .11030
1.058 .09235 1.140 .09936
1.411 .07819 1.520 .08357
1.763 .05913 1.899 .06189
2.116 .03619 2.279 .03556
2.469 .01456 2.659 .01198
2.821 .00268 3.039 .00144
3.174 .00015 3.419 .00004
3,527 .00000 3.799 .00000
-F.- 2 F‘ 2.6
T P T P

0.000 .13300 0.000 .15240
0.418 .13300 0.450 .15240
0.836 .12230 0.901 .14070
1.254 .11000 1.351 .12800
1.672 .09227 1.802 .10950
2.091 .06731 2.252 .08245
2.509 .03580 2.702 .04636
2.927 .00912 3.153 .01238
3.345 .00054 3.603 .00060

3.736 .00000 4,054 .00000



|

0.000
0.479
0.957
1.436
1.914
2,393
2.872
3.350
3.829

4,307

F =31

|

.19610
.19610
.18000
.15500
.12160
.08924
.04903
.01158
.00035

.00000

~59-

P1 = .30

~l

0.000
0.499
0.998
1.497
1.996
2,495
2,994
3.493
3.992

4.491

F = 3.4

P
.16930
.16930
.15550
.14050
.11900
.08791
.04557
.00824
.00012

.00000



"

0.000
0.140
0.279
0.419
0.559
0.699
0.839
0.979
1.120
1.260
1.400
1.540
1.680
1.820
1.959
2.099
2.239

2.379

.1

P
.02907
.02907
.02770
.02567
.02301
.01985
.01638
.01281
.00941
.00644
.00405
.00231
.00118
.00054
.00021
.00007
.00002

.00000

-60-

Pl = .40

M|

0.000
0.176
0.353
0.529
0.705
0.882
1.058
1.234
1.411
1.587
1.763
1,940
2.116
2.292
2,469

2,645

|

P
. 04654
.04654
04411
.04010
.03503
.02884
.02233
.01584
.01008
.00561
.00265
.00103
.00032
.00008
.00001

.00000



|

0.000
0.202
0.404
0.606
0.807
1,009
1.211
1.413
1.615
1.817
2.019
2.220
2,422
2,624

2.826

]

P
.05887
.05887
.05519
.05004
.04320
.03497
.02603
.01720
.00972
.00450
.00162
.00044
.00008
.00001

.00000

-61-

Pl =

.40

"

0.000
0.222
0.444
0.667
0.889
1.111
1.333
1.555
1.777
1.999
2,222
2.444
2.666

2.888

]

P
.07284
.07284
.06905
.04606
.05324
.04192
.03019
.01883
.00963
.00378
.00106
.00020
.00002

.00000



-62-

Pl = .40
F=.5 F=1.0
T P T P
0.000 .07819 0.000 .14330
0.239 .07819 0.302 .14330
0.479 .07288 0.603 .13600
0.718 .06563 0.905 .12600
0.957 .05584 1.206 .09847
1.197 .04382 1.508 .07404
1.436 .03064 1.809 .04977
1.675 .01795 2,111 .02613
1.915 .00819 2,412 .00886
2.154 .00267 2,714 .00154
2.393 .00057 3.015 .00011
2.633 .00007 3.317 .00000
2.872 .00000
F=1.6 F=2.0
T 3 T P
0.000 .16620 0.000 .16250
0.345 .16620 0.380 .16250
0.690 .15000 0.760 .15070
1.035 .13430 1.140 .13660
1.381 .10980 1.520 .11630
1.726 .08462 1.899 .08867
2.071 .05520 2,279 .05445
2,416 .02549 2,659 .02113
2,761 .00606 3.039 .00327
3.106 .00051 3.419 .00012
3.451 .00001 3.799 .00000

3.797 .00000



-63-

Pl = .40
Fm2,3 F=3
T P T P
0.000 .16910 0.000 .18660
0.409 .16910 0.434 .18660
0.818 .15580 0.869 .17200
1.228 .13980 1.305 .15490
1.637 .11670 1.739 .13030
2.046 .08486 2.174 .09618
2,455 .04595 2.609 .05282
2.864 ,01283 3.044 .01389
3,274 .00097 3.479 .00077
3,683 .00001 3.914 .00000
4,092 ,00000
F = 3.5 F=4,0
T P T P

0.000 .20270 0.000 .21280
0.462 .20270 0.487 .21280
0.924 .18720 0,973 .19570
1.386 .16970 1.459 .17680
1.848 .14390 1.946 .14950
2.310 .10610 2.432 .10930
2,773 .05679 2.919 .05533
3.235 .01355 3.405 .01040
3,697 .00051 3.892 .00020

4,159 .00000 4,378 .00000



ol

0.000
0.130
0.260
0.390
0.520
0,650
0.780
0.910
1,039
1.169
1,299
1,429
1,559
1,689
1.819
1,949
2,079
2,209

2,339

F = 0.1

P
.03035
.03035
.02906
.02716
.02259
.02155
.01%12
»01395
.01119
.00808
.00546
.00342
.00197
.00103
.00049
.00020
.00008
+ 00002

.00000

—64-

Pl =

.50

23|

0.000
0.164
0.327
0.491
0.654
0.819
0,982
1,146
1,310
1.473
1.637
1.801
1.964
2,128
2,292
2,455

2,619

F = 0.2

P
. 04989
.04989
.04730
.04357
.03869
.02909
.02375
.01934
.01312
.00802
.00432
+00201
.00079
.00025
.00007
.00001

.00000



2l

0.000
0,187
0,375
0,562
0.750
0.937
1.124
1,312
1.499
1,686
1.874
2,061
2,249
2.436

2.623

F =0.3

|

.06450
. 06450
.06118
.05880
.04869
.03417
.03037
.02100
.01288
,00677
.00294
.00102
.00027
.00005

.00000
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Pl =

.50

"

0.000
0.206
0.413
0.619
0.825
1,031
1,237
1.444
1,650
1.856
2,062
2,269
2.475
2.681

2.887

F = 0.4

.07678
.07678
.07269
.06960
.05661
.04537
.03365
.02217
.01248
.00572
.00203
.00053
.00009
,00001

.00000



2l

0,000
0.222
0.444
0.666
0.889
1.111
1.333
1.555
1.777
1.999
2.222
2,444
2,666

2.888

]

.08860
.08860
.08396
.07700
.06489
.05131
.03720
.02347
.01222
.00492
.00143
.00028
.00003

.00000

~66-

Pl =

.50

" |

0.000
0.279
0.559
0.839
1.112
1.400
1.679
1.959
2.239
2,519
2,799

3,079

el

|

.12320
.12320
.11450
.10280
.08680
.06657
.04418
.02282
.00806
.00165
.00017

.00000
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Pl = .50
F = 1.6 F=2

T P T P
0.000 .16010 0.000 .18160
0.320 .16010 0.353 .18160
0.641 .14910 0.705 .16870
0.961 13520 1.058 .15280
1.282 .11580 1.411 .13030
1.602 .09038 1.763 .10030
1.922 .05998 2.116 .06408
2.243 .02954 2.469 .02833
2.563 .00861 2.821 .00624
2.884 .00112 3.174 .00045
3,204 .00005 3.527 .00000
3.524 .00000

F=3 F =4

T P T P
0.000 .21710 0.000 .23810
0.404 .21710 0.443 .23810
0.807 .20130 0.889 .21990
0.211 .18240 1.333 .19850
1.615 .15520 1.777 .16740
2,018 .11810 2,222 .12400
2,422 .07195 2.666 .06894
2.826 .02652 3.110 .01859
3.229 .00334 3.554 .00101
3.633 .00007 3.999 .00000

4,037 .00000



n|

0.000
0.497
0.994
1.491
1.988
2,485
2,982
3.479
3.976

4,473

F = 5,3

P
.26970
.26970
. 24820
«22350
.18800
.13720
.06998
.01309
.00023

+00000

-68~

Pl =

.50

L1

0.000
0.485
0.969
1.455
1,940
2,425
2.909
3.394
3.879

4,364

F=25.5

3
.27400
.27400
.25380
+23050
.19600
.14760
.08466
.02249
.00083

.00000
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Pl = .60
F = .5 F=.9
T P T P

0.000 .09278 0.000 .13250
0.209 .09278 0.263 .13250
0.418 .08787 0.526 .12340
0.627 08000 0.790 .11120
0.836 .06858 1.054 .09446
1.045 .05507 1.317 .07363
1.254 .04093 1.580 .05048
1.463 .02701 1.844 .02816
1.673 .01521 2,107 .01155
1.882 .00694 2,371 .00307
2,091 .00244 2.634 .00047
2.300 .00062 2.897 .00004
2,509 .00011 3.161 .00000
2.718 .00001

2.927 .00000

F = 1.4 F = 2.2
T P T P

0.000 .16470 0.000 .24200
0.302 .16470 0.332 .24200
0.603 .15310 0.664 .23800
0.905 .13790 0.996 .20000
1.206 .11660 1.327 .16730
1.508 .08929 1.659 .12580
1.809 .05843 1.991 .08412
2.111 .02877 2.323 .04265
2.412 .00900 2.655 .01276
2.714 .00144 2,987 .00162
3.015 .00009 3.319 .00006

3.317 .00000 3,650 .00000
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PL = .60
F=3 F =4
T P T P
0.000 .23870 0.000 .27230
0.379 .23870 0.418 .27230
0.759 .22160 0.836 .25280
1.140 .20090 1,254 .22970
1.520 .17150 1.672 .19650
1.899 .13200 2,091 .15090
2.279 .08380 2.509 .09325
2.659 .03514 2.927 .03470
3.039 .00631 3.345 .00414
3,419 .00028 3.763 .00007
3.799 .00000 4,181 .00000
F=35 F=6
T P T P
0.000 .28120 0.000 .37270
0.450 .28120 0.479 .37270
0.901 .25950 0.957 .35000
1.351 .23340 1.436 .29740
1,802 .19570 1.914 .23730
2.252 .14280 2.393 .17740
2.702 .07633 2.872 .10300
3.153 .01889 3.350 .02892
3.603 .00087 3.829 .00129

4,054 .00000 4,307 .00000
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TABLE 1

EXPERIMENTAL DATA

Stainless Steel (303)

Specimen Pair No. 1
k = 10.0 BTU/HR.FT.°F

Specimen 1.1 Specimen 1.2 Combined Values
01 = 81 u" 02 = 69 u" o] = 106 u"
Ry = 10.4" R, = 8.4" Ry = 4.65"
Tanle = ,0512 Tan26 = ,0378 Tan® = .0635
F(Applied Load in Lbs.) h(BTU/HR.FTzégl
165 10.7
265 12,5
365 13.9
765 20.0
1165 26,0
2165 32.8
3165 41.0
5165 54.7
7165 62.5

9765 85.7



Specimen 2.1

%

= 69 un

R = 250"

1

Tanle =

.068

F(Lbs.)

165

265

365

565

765

1165

-72-

TABLE 11
EXPERIMENTAL DATA
Stainless Steel (303)
Specimen Pair No. 2
k = 10.0 BTU/HR.FT°F
Specimen 2.2 Combined Values
= " = "
02 Owu o 69 u
= " = 1"
R2 156 Ri 96
Tan26 = Tand = ,068
h (BTU/HR . FT2°F)
49
71
88
101
124
208
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FIG. 3 SURFACE WAVINESS
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FIG. 4a SMOOTH SPHERE PRESSED AGAINST
RIGID PLANE

R1
/

Rz

FIG.4b TWO ROUGH SURFACES PRESSED
TOGETHER
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wiry = £ §§E 4

POINT@ IS A POINT WHERE WI(r) IS TO BE
COMPUTED

POINT IS THE ORIGIN OF A CIRCULAR
COORDINATE SYSTEM
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FIG.5 TYPICAL CONTACT AREA
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RESISTANCE APPARATUS

FIG. 22 CONTACT
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To= AMBIENT TEMPERATURE
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